metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.2D28, (C2×D28)⋊3C4, C23⋊C4⋊2D7, (C4×Dic7)⋊2C4, (C2×D4).4D14, C7⋊1(C42⋊C4), C28⋊D4.1C2, C23⋊Dic7⋊1C2, (D4×C14).4C22, (C22×C14).11D4, C23.4(C7⋊D4), C14.10(C23⋊C4), C22.11(D14⋊C4), C2.11(C23.1D14), (C2×C4).2(C4×D7), (C7×C23⋊C4)⋊2C2, (C2×C28).2(C2×C4), (C2×C14).4(C22⋊C4), SmallGroup(448,31)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×D4 — C23⋊C4 |
Generators and relations for C23.2D28
G = < a,b,c,d,e | a2=b2=c2=d28=1, e2=a, dad-1=ab=ba, ac=ca, ae=ea, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=ad-1 >
Subgroups: 668 in 86 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C42, C22⋊C4, C2×D4, C2×D4, Dic7, C28, D14, C2×C14, C2×C14, C23⋊C4, C23⋊C4, C4⋊1D4, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×C14, C42⋊C4, C4×Dic7, C23.D7, C7×C22⋊C4, C2×D28, C2×C7⋊D4, D4×C14, C23⋊Dic7, C7×C23⋊C4, C28⋊D4, C23.2D28
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D14, C23⋊C4, C4×D7, D28, C7⋊D4, C42⋊C4, D14⋊C4, C23.1D14, C23.2D28
(1 44)(2 45)(5 48)(6 49)(9 52)(10 53)(13 56)(14 29)(17 32)(18 33)(21 36)(22 37)(25 40)(26 41)
(2 45)(4 47)(6 49)(8 51)(10 53)(12 55)(14 29)(16 31)(18 33)(20 35)(22 37)(24 39)(26 41)(28 43)
(1 44)(2 45)(3 46)(4 47)(5 48)(6 49)(7 50)(8 51)(9 52)(10 53)(11 54)(12 55)(13 56)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)(28 43)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 14 44 29)(2 56 45 13)(3 55)(4 54)(5 10 48 53)(6 52 49 9)(7 51)(8 50)(11 47)(12 46)(15 43)(16 42)(17 26 32 41)(18 40 33 25)(19 39)(20 38)(21 22 36 37)(23 35)(24 34)(27 31)(28 30)
G:=sub<Sym(56)| (1,44)(2,45)(5,48)(6,49)(9,52)(10,53)(13,56)(14,29)(17,32)(18,33)(21,36)(22,37)(25,40)(26,41), (2,45)(4,47)(6,49)(8,51)(10,53)(12,55)(14,29)(16,31)(18,33)(20,35)(22,37)(24,39)(26,41)(28,43), (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,14,44,29)(2,56,45,13)(3,55)(4,54)(5,10,48,53)(6,52,49,9)(7,51)(8,50)(11,47)(12,46)(15,43)(16,42)(17,26,32,41)(18,40,33,25)(19,39)(20,38)(21,22,36,37)(23,35)(24,34)(27,31)(28,30)>;
G:=Group( (1,44)(2,45)(5,48)(6,49)(9,52)(10,53)(13,56)(14,29)(17,32)(18,33)(21,36)(22,37)(25,40)(26,41), (2,45)(4,47)(6,49)(8,51)(10,53)(12,55)(14,29)(16,31)(18,33)(20,35)(22,37)(24,39)(26,41)(28,43), (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,14,44,29)(2,56,45,13)(3,55)(4,54)(5,10,48,53)(6,52,49,9)(7,51)(8,50)(11,47)(12,46)(15,43)(16,42)(17,26,32,41)(18,40,33,25)(19,39)(20,38)(21,22,36,37)(23,35)(24,34)(27,31)(28,30) );
G=PermutationGroup([[(1,44),(2,45),(5,48),(6,49),(9,52),(10,53),(13,56),(14,29),(17,32),(18,33),(21,36),(22,37),(25,40),(26,41)], [(2,45),(4,47),(6,49),(8,51),(10,53),(12,55),(14,29),(16,31),(18,33),(20,35),(22,37),(24,39),(26,41),(28,43)], [(1,44),(2,45),(3,46),(4,47),(5,48),(6,49),(7,50),(8,51),(9,52),(10,53),(11,54),(12,55),(13,56),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42),(28,43)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,14,44,29),(2,56,45,13),(3,55),(4,54),(5,10,48,53),(6,52,49,9),(7,51),(8,50),(11,47),(12,46),(15,43),(16,42),(17,26,32,41),(18,40,33,25),(19,39),(20,38),(21,22,36,37),(23,35),(24,34),(27,31),(28,30)]])
46 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 7A | 7B | 7C | 14A | 14B | 14C | 14D | ··· | 14L | 14M | 14N | 14O | 28A | ··· | 28O |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | 14 | 14 | 14 | ··· | 14 | 14 | 14 | 14 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 4 | 4 | 56 | 4 | 8 | 8 | 28 | 28 | 56 | 56 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | ··· | 8 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D7 | D14 | C4×D7 | D28 | C7⋊D4 | C23⋊C4 | C42⋊C4 | C23.1D14 | C23.2D28 |
kernel | C23.2D28 | C23⋊Dic7 | C7×C23⋊C4 | C28⋊D4 | C4×Dic7 | C2×D28 | C22×C14 | C23⋊C4 | C2×D4 | C2×C4 | C23 | C23 | C14 | C7 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 1 | 2 | 6 | 3 |
Matrix representation of C23.2D28 ►in GL8(𝔽29)
28 | 16 | 7 | 4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 22 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 13 | 0 | 22 | 28 |
28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
1 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 24 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 24 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 8 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
20 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
24 | 22 | 22 | 25 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 28 | 5 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 24 | 11 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
0 | 0 | 0 | 0 | 0 | 21 | 28 | 8 |
0 | 0 | 0 | 0 | 13 | 28 | 0 | 0 |
G:=sub<GL(8,GF(29))| [28,0,0,0,0,0,0,0,16,1,0,0,0,0,0,0,7,0,1,0,0,0,0,0,4,22,13,28,0,0,0,0,0,0,0,0,28,16,17,13,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,22,0,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28],[20,22,1,0,0,0,0,0,0,0,9,13,0,0,0,0,0,7,0,24,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,0,0,8,1,0,0,0,0,24,0,28,0,0,0,0,0,0,1,0,0],[20,24,1,11,0,0,0,0,28,22,4,28,0,0,0,0,0,22,0,5,0,0,0,0,0,25,0,16,0,0,0,0,0,0,0,0,1,0,0,13,0,0,0,0,0,0,21,28,0,0,0,0,24,0,28,0,0,0,0,0,11,28,8,0] >;
C23.2D28 in GAP, Magma, Sage, TeX
C_2^3._2D_{28}
% in TeX
G:=Group("C2^3.2D28");
// GroupNames label
G:=SmallGroup(448,31);
// by ID
G=gap.SmallGroup(448,31);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,141,36,422,1123,794,297,136,851,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=1,e^2=a,d*a*d^-1=a*b=b*a,a*c=c*a,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*d^-1>;
// generators/relations